The Dynamic Host Configuration Protocol (DHCP) is a standardized network protocol used on Internet Protocol (IP) networks. The DHCP protocol is controlled by a DHCP server that dynamically distributes network configuration parameters, such as IP addresses, for interfaces and services. A router or a residential gateway can be enabled to act as a DHCP server. A DHCP server enables computers to request IP addresses and networking parameters automatically, reducing the need for a network administrator or a user to configure these settings manually. In the absence of a DHCP server, each computer or other device (eg., a printer) on the network needs to be statically (ie., manually) assigned an IP address.

Overview:
TCP/IP defines how devices on one network communicate with devices on another network. A DHCP server can manage TCP/IP settings for devices on a network, by automatically or dynamically assigning Internet Protocol (IP) addresses to the devices. Networks ranging in size from home networks to large campus networks and regional Internet service provider networks commonly use DHCP. Most residential network routers receive a globally unique IP address within the provider network. Within a local network, a DHCP server assigns a local IP address to each device connected to the network.

The DHCP protocol operates based on the client–server model. When a computer or other device connects to a network, the DHCP client software sends a broadcast query requesting the necessary information. Any DHCP server on the network may service the request. The DHCP server manages a pool of IP addresses and information about client configuration parameters such as default gateway, domain name, the name servers, and time servers. On receiving a request, the server may respond with specific information for each client, as previously configured by an administrator, or with a specific address and any other information valid for the entire network and for the time period for which the allocation (lease) is valid. A client typically queries for this information immediately after booting, and periodically thereafter before the expiration of the information. When a DHCP client refreshes an assignment, it initially requests the same parameter values, but the DHCP server may assign a new address based on the assignment policies set by administrators.

On large networks that consist of multiple links, a single DHCP server may service the entire network when aided by DHCP relay agents located on the interconnecting routers. Such agents relay messages between DHCP clients and DHCP servers located on different subnets.

Depending on implementation, the DHCP server may have three methods of allocating IP addresses:

Dynamic allocation:
A network administrator reserves a range of IP addresses for DHCP, and each DHCP client on the LAN is configured to request an IP address from the DHCP server during network initialization. The request-and-grant process uses a lease concept with a controllable time period, allowing the DHCP server to reclaim (and then reallocate) IP addresses that are not renewed.

Automatic allocation:
The DHCP server permanently assigns an IP address to a requesting client from the range defined by the administrator. This is like dynamic allocation, but the DHCP server keeps a table of past IP address assignments, so that it can preferentially assign to a client the same IP address that the client previously had.
Manual allocation (commonly called static allocation)
The DHCP server is disabled and the administrator allocates a private IP address based on a preconfigured mapping to each client’s MAC address. This feature is variously called static DHCP assignment by DD-WRT, fixed-address by the dhcpd documentation, address reservation by Netgear, DHCP reservation or static DHCP by Cisco and Linksys, and IP address reservation or MAC/IP address binding by various other router manufacturers.
DHCP is used for Internet Protocol version 4 (IPv4), as well as for IPv6. While both versions serve the same purpose, the details of the protocol for IPv4 and IPv6 differ sufficiently that they may be considered separate protocols. For the IPv6 operation, devices may alternatively use stateless address autoconfiguration. IPv6 hosts may also use link-local addressing to achieve operations restricted to the local network link.

Operation:

The DHCP employs a connectionless service model, using the User Datagram Protocol (UDP). It is implemented with two UDP port numbers for its operations which are the same as for the BOOTP protocol. UDP port number 67 is the destination port of a server, and UDP port number 68 is used by the client.

DHCP operations fall into four phases: server discovery, IP lease offer, IP lease request, and IP lease acknowledgement. These stages are often abbreviated as DORA for discovery, offer, request, and acknowledgement.

The DHCP operation begins with clients broadcasting a request. If the client and server are on different subnets, a DHCP Helper or DHCP Relay Agent may be used. Clients requesting renewal of an existing lease may communicate directly via UDP unicast, since the client already has an established IP address at that point. Additionally, there is a BOOTP flag the client can use to indicate in which way (broadcast or unicast) it can receive the DHCPOFFER: 0x8000 for broadcast, 0x0000 for unicast. Only hosts with preconfigured IP addresses can receive unicast packets so in the usual use case clients in discovery phase should set BOOTP flag to 0x8000 (broadcast).

DHCP discovery:
The client broadcasts messages on the network subnet using the destination address 255.255.255.255 or the specific subnet broadcast address. A DHCP client may also request its last-known IP address. If the client remains connected to the same network, the server may grant the request. Otherwise, it depends whether the server is set up as authoritative or not. An authoritative server denies the request, causing the client to issue a new request. A non-authoritative server simply ignores the request, leading to an implementation-dependent timeout for the client to expire the request and ask for a new IP address.

DHCP offer:
When a DHCP server receives a DHCPDISCOVER message from a client, which is an IP address lease request, the server reserves an IP address for the client and makes a lease offer by sending a DHCPOFFER message to the client. This message contains the client’s MAC address, the IP address that the server is offering, the subnet mask, the lease duration, and the IP address of the DHCP server making the offer.

The server determines the configuration based on the client’s hardware address as specified in the CHADDR (client hardware address) field. Here the server, 192.168.1.1, specifies the client’s IP address in the YIADDR (your IP address) field.

DHCP Request:

n response to the DHCP offer, the client replies with a DHCP request, broadcast to the server, requesting the offered address. A client can receive DHCP offers from multiple servers, but it will accept only one DHCP offer. Based on required server identification option in the request and broadcast messaging, servers are informed whose offer the client has accepted.Section 3.1, Item 3 When other DHCP servers receive this message, they withdraw any offers that they might have made to the client and return the offered address to the pool of available addresses.

DHCP Acknowledment:
When the DHCP server receives the DHCPREQUEST message from the client, the configuration process enters its final phase. The acknowledgement phase involves sending a DHCPACK packet to the client. This packet includes the lease duration and any other configuration information that the client might have requested. At this point, the IP configuration process is completed.

The protocol expects the DHCP client to configure its network interface with the negotiated parameters.

After the client obtains an IP address, it should probe the newly received address (e.g. with ARP Address Resolution Protocol) to prevent address conflicts caused by overlapping address pools of DHCP servers.

DHCP information:
A DHCP client may request more information than the server sent with the original DHCPOFFER. The client may also request repeat data for a particular application. For example, browsers use DHCP Inform to obtain web proxy settings via WPAD.

DHCP releasing:
The client sends a request to the DHCP server to release the DHCP information and the client deactivates its IP address. As client devices usually do not know when users may unplug them from the network, the protocol does not mandate the sending of DHCP Release.